A Trajectory Clustering Approach To Crowd Flow Segmentation in Videos



R. Sharma & T. Guha Department of Electrical Engineering Indian Institute of Technology, Kanpur

## INTRODUCTION

## Introduction



- World has seen various events of human loss due to crowd mismanagement.
  - 1954 Kumbh Mela stampede: 800+ killed, 2000+ injured.
  - 2005 Al-Aaimmah bridge stampede: 953 killed
- Existing object detection and tracking methods are not suitable for crowd scenes.
  - Complex dynamics of crowd scenes.
  - Large number of very small objects are difficult to track simultaneously.

#### Problem Statement

## Problem Statement



Sample Video



Image with segmented crowd-flow patterns

- Assumptions: -
  - Video camera used is a static one.
  - Video has at least 100 frames.

#### **Related Works**

# Related Works

- I. Pixel Domain Approaches
  - Ali et al. CVPR, 2007
    - Approach is inspired by fluid dynamics theory.
    - Used finite time Lyapunov exponent fields to detect the Lagrangian coherent structures.
    - Further used these Lagrangian coherent structures to locate flow boundaries.
- II. Compressed Domain Approaches
  - Praveen et al. IEEE CONECCT, 2014
    - Used the standard expectation-maximization algorithm to cluster the motion vectors.
    - The clusters which converges to single flow are merged together.
  - Kurthi et al. IEEE ICIP, 2014
    - Modelled the motion vectors as conditional random fields (CRF).
    - The crowd flow segments are obtained by labelling the motion vectors such that the global energy of the CRF is minimized.
- The above approaches do not take into account the temporal evolution of motion vectors but just rely on their average over time.

# Methodology

# Methodology

#### • Our approach is based on trajectory clustering.



## Trajectory Extraction

- Object detection and tracking is not practical for high density videos.
- We track mid-level structures, blocks [64x64].
- We use standard Lucas-Kanade-Tomasi<sup>[1]</sup> tracking algorithm to obtain the required trajectories.
- Tracker constituents are revised after every 40 frames to take into account the newly appearing objects.

[1] Carlo Tomasi and Takeo Kanade. Detection and Tracking of Point Features. *Carnegie Mellon University Technical Report CMU-CS-91-132*, April 1991.

## Trajectory Extraction



Sample Video



Tracking under process



**Extracted Tracjectories** 

# **Trajectory Clustering**

#### a. Trajectory representation

- I. Shape features: Parameterizing the shape of the trajectories by expressing them as a polynomial function of time.
- II. Location features: Takes into account the mean spatial location of a trajectory.
- III. Flow direction: Takes care of the direction of flow of a trajectory with respect to the dominant flow direction of a video.
- IV. Density features: Consider the information from the neighborhood of trajectories which is useful in segregating spatially overlapping clusters.

# **Trajectory Clustering**

- a. Trajectory clustering algorithm
  - Step1: Representative *models* from different types of trajectory patterns are selected.
  - Step2 : A binary matrix, called *Preference Set* is constructed.
  - *Preference Set* represents the vote of each trajectory to all models (1 for 'match', 0 otherwise).

Step3: -Using the Preference Set, an agglomerative clustering is performed.

• Jaccard distance is used as measure for similarity between two trajectories.

# **Trajectory Clustering**



Sample Video



# Crowd Flow Segmentation

• The mentioned trajectory clustering algorithm over-clusters the given set of trajectories.



Sample Video



Ground truth segmentation



• Objects belonging to same flow pattern may have different starting and terminating points in trajectories, thus may be structurally different.

## Crowd Flow Segmentation

 Using a slightly modified version of a density based clustering algorithm (DBSCAN [3]), we further perform a second round of clustering process over the previously obtained trajectory clusters.



Sample Video



Ground truth segmentation



## Results

## Results

| Sample Frame | Ground Truth | Ali et al. [1] | Kurthi et al.[3] | Proposed |
|--------------|--------------|----------------|------------------|----------|
|              |              | 7              |                  |          |
|              |              |                |                  |          |
|              |              |                |                  |          |
|              |              |                |                  |          |

## Results

| Test Samples | Ali et al. | Biswas et al. | Kurthi et al. | Proposed |
|--------------|------------|---------------|---------------|----------|
| Seq #1       | 0.72       | 0.25          | 0.92          | 0.94     |
| Seq #2       | 0.68       | 0.64          | 0.47          | 0.78     |
| Seq #3       | 0.56       | 0.69          | 0.61          | 0.66     |
| Seq #4       | 0.74       | 0.70          | 0.82          | 0.76     |
| Seq #5       | 0.42       | 0.57          | 0.40          | 0.63     |
| Seq #6       | 0.47       | 0.63          | 0.63          | 0.51     |
| Overall      | 0.60       | 0.58          | 0.64          | 0.71     |

Objective evaluation of segmentation performance measured in terms of Jaccard similarity with respect to the manually generated ground truth.

### Limitations

• Over-clustering in cases if circular flows are present.



Sample Video





Ground Truth

**Proposed Result** 

## Conclusions

## Conclusions

- Proposed an unsupervised approach to crowd flow segmentation.
- Proposed a new trajectory representation strategy, taking into account the shape, location, flow direction and density of trajectories.
- Developed a new trajectory clustering algorithm specific to high density scenarios.
- Demonstrated that our method can produce superior performance than state-of-the-art methods.

### **Contact Information**

For any queries, please contact the author.
Rahul Sharma
Email: - rarahulsharmash@gmail.com

#### Thank You!!